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Abstract— We present Asymmetric Critic Guided Distillation,
ACGD, a framework for learning multi-task dexterous manip-
ulation policies that can manipulate articulated objects using
images as input. ACGD is a scalable student-teacher distillation
approach that utilizes behavior cloning to distill multiple expert
policies into a single vision-based, multi-task student policy
for dexterous manipulation. The expert policies are trained
with traditional RL techniques with access to privileged state
information of both the robot and the manipulated object, while
the distilled student policy operates under realistic sensory
constraints, specifically using only camera images and robot
proprioception. During distillation, we use an expert-critic that
provides action labels and value estimates to refine the student’s
action sampling through a dual IL/RL objective. In the multi-task
setting, we achieve this through an aggregate critic for different
single-task experts. Our approach exhibits strong performance
compared to a number of state-of-the-art imitation learning (IL)
and reinforcement learning (RL) baselines. We evaluate across
a variety of multi-task dexterous manipulation benchmarks
including bimanual manipulation, single-hand object articulation
tasks, and a tendon-actuated hand and achieves state-of-the-
art performance with 10-15% improvement over the baseline
algorithms. Visit our website for more details.

I. INTRODUCTION

The dexterous use of tools remains a key challenge in
robotics. It requires a multi-fingered robotic hand to make
contact with a tool to use it in a deliberate fashion. One issue
is that the high number of degrees of freedom of a dexterous
multi-fingered hand increases the search space for a control
policy. Furthermore, the additional degrees of freedom from
the most commonly used tools (e.g. spray bottles or soap
dispensers) require the control policy to very deliberately exert
forces on the object. Prior work in this space either trained
multi-task policies lacking the ability to manipulate tools
and articulated objects [1–3], or required to manually collect
demonstrations which can be difficult to scale to multiple
objects [4, 5]. In this work, we study the problem of learning
a multi-task, visuomotor manipulation policy that enables
the multi-fingered robot hand to manipulate and control a
diverse set of objects, without requiring manually-collected
demonstrations.

Our approach to this problem uses a teacher-student distilla-
tion approach that can distill a set of single-task manipulation
experts that use privileged information into a single, multi-task
visuomotor policy network that takes camera observations and
robot proprioception as input. The key technical contribution
is a novel, critic-informed teacher-student learning framework
that is capable of efficiently distilling skills from multiple
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single-task expert policies. Specifically, our critic-informed
distillation leverages additional information from the RL-
trained expert critics to form a dual-IL/RL objective [6] to
distill multiple tasks at once. Our experiments showcase a
set of simulated benchmarks testing multi-task, dexterous
manipulation skills learned across a variety of different
domains.

Contributions. The key technical contributions of this
work are:
1) We present a novel teacher-student learning framework

alongside a vector-quantized imitation learning policy
architecture that can distill multiple state-based experts
for dexterous manipulation into a single multi-task visuo-
motor policy.

2) We compile a multi-task learning benchmark for learning
dexterous visuo-motor policies from rendered images,
consolidating over 15 tasks in 3 environments involving
rigid and articulated objects with one or two multi-fingered
hands.

3) We share diverse image and proprioception datasets of
successful demonstrations generated with task-specific
expert policies trained with privileged information.

We compare our approach to several baselines across tasks
and benchmark datasets, implemented with the Robomimic [7]
library, and observed consistent performance improvements
across almost all tasks in three different domains: single-
hand Allegro [8], dual-hand Shadow Hand [9], and single
musculoskeletal arm environments [1], pictured in Fig. 1. We
highlight the advantages of our method in overall task success
rate performance, data efficiency, and multi-task scalability
compared to several multi-task policy-learning methods such
as ACT, BC-RNN, and MT-PPO [9], and DAgger [10] as an
alternative distillation approach.

II. RELATED WORK

Previous methods can generally be grouped by the follow-
ing attributes: i) learn in a multi-task domain, ii) learn pixels
to actions from demonstrations, iii) learn dexterous skills with
reinforcement learning. Notably, few prior works exist at the
intersection of these three domains: learning dexterous skills
from pixels in a multi-task setting. Prior work that focuses on
multi-task policies typically use grasping and re-orientation
tasks such as manipulating blocks or hammers, and have
shown to scale the number of objects that can be reposed by
a single policy [1, 11]. These tasks demonstrate the ability
of a single policy to pick up, translate, and rotate the object
into a desired pose, albeit using ground-truth state inputs.
Additionally, some of these methods rely on additional human-
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Fig. 1: Overview of ACGD broken into 1) expert training and data collection and 2) student-distillation phases. DistillACT leverages
expert rollouts and critics collected in the first phase, and uses expert supervision through expert-critic mechanism for action labeling
and value assessments to refine the student’s actions during distillation. This is in contrast to DAgger, which also requires sampling of
environment rollouts from the state-based expert policy during the second stage of policy distillation.

collected motion capture trajectories as demonstration data for
learning. In contrast, our method interacts with objects that
are both rigid and articulated, going beyond the reorientation
of a single object, and learns from other learned experts using
vision.

Another set of approaches can be categorized as motion
generation techniques, which attempt to mirror human-
generated trajectories of object interaction. While these
approaches attempt to solve similar single and dual-hand
object manipulation tasks [4, 12, 13], they do not generalize
to multiple objects, and require hand-collected demonstration
data from a human expert. In contrast, our work aims to
automate the trajectory generation by learning single-task
teachers with ground-truth state inputs. This avoids the need
for human demonstrations and relies on single-task reinforce-
ment learning experts instead to generate demonstrations,
similar to methods such as AC-Teach [14] and R-MPO [15].
We also use the expert critics to do distillation instead of
online distillation approaches such as DAgger [10, 16].

Some prior works have shown the ability to learn complex
high-dimensional continuous control policies from vision, like
playing soccer [17], or performing reposing of objects in-hand
in mid-air [2, 18], using RL-only methods [3, 19]. However,
these methods typically employ extensive multi-stage training
pipelines, such as learning 3D rendering of the environment in
a NeRF to perform sim-to-real transfer, or multi-stage student
policy training to learn a 3D representation from point cloud
information. While our work does not attempt to do sim-to-
real, we rely on a two-stage training pipeline shown in Fig 1
for distilling our visual student policy by sample-efficient

imitation learning, and using pre-trained vision backbones
to extract RGB input features. We consider other pure-RL
approaches to multi-task dexterous manipulation in simulation
experiments include TDMPC2 [20] and MT-PPO [9], which
we compare to extensively in Section IV.

We compare ACGD to behavior cloning and distillation
methods. ACGD can build on any generic Behavior Cloning
Model. In this paper we use the ALOHA ACT architecture
as the behavior cloning backbone [21–23] to use with
distillation metric that gives it a dual IL and policy-evaluation
objective [6]. Additionally, our work adopts a student-teacher
distillation approach similar to some past work, but they
primarily used RL for both student and teacher policies
[24–26]. We discuss the similarities and differences to these
methods more extensively in the following section.

III. ACGD: ASYMMETRIC CRITIC GUIDED DISTILLATION

We propose ACGD, a method for distilling a multi-task
policy from several single-task expert policies. The result
is a continuous control policy for dexterous manipulation
using image inputs. In our framework, as shown in Figure
1, a set of single-task expert policies are first learned with
reinforcement learning using privileged ground-truth state
information. Afterwards, a multi-task student policy that takes
as input raw images and robot proprioception, is distilled
from expert policies. At the core of the distillation process
is an efficient imitation learning method leveraging an RL
critic-informed distillation loss function.
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Fig. 2: Multitask Policy Distillation: Diagram showing the different
modules contained within the policy VQ-VAE backbone. This
includes two stages of training, a) action discretization, during which
a codebook of discrete action tokens is learned, and b) behavior
cloning, during which observations (ztask) are encoded to predict
the correct discretizeed and decoded actions.

A. Behavior Cloning as Sequential Token Prediction
While critic-guided distillation is compatible in theory with

any combination of policy and vision backbone architectures,
we chose a simple and effective combination of different
imitation learning techniques that have shown to scale
effectively for the multi-task student distillation problem. Our
goal is to enable learning of task-specific features for actions
and observations that allow the policy to coherently output
actions for different tasks without confusion or catastrophic
forgetting. To this end, we use a vector-quantized variational
autoencoder (VQ-VAE) [27] to tokenize action chunks into
discrete latent embeddings, and decodes them with a multi-
headed attention decoder. This is similar to methods like
ACT and VQ-BET [21–23, 28]. Below, we briefly summarize
action chunking, temporal ensembling, and discretized action
tokenization. For more details, we refer to [29].
Action chunking. – Action chunking groups multiple actions
into a batched sequence to reduce the effective horizon of
the task. Every k steps, the agent receives an observation and
generates the next k actions to execute sequentially.
Temporal ensembling. – To avoid jerky motion from the
abrupt change in observation conditioning every k steps,
in practice we query the policy at every timestep, causing
action chunks to overlap. Multiple predicted actions for a
single timestep t from past k chunks (stored as at�k:t

t ) are
exponentially averaged with weight wi = exp(�⌘i), making
the ensembled prediction at =

Pk
i=1 wia

t�i
t . Both techniques

have been show to be crucial for producing precise and smooth
motion, as explored further in [29].
Vector-quantized action generation. – For multi-task imi-
tation learning, we use a vector-quantized variational auto-
encoder (VQ-VAE) with a transformer encoder and decoder.
Instead of predicting actions from latent variables parameter-

ized using a standard normal distribution, ACGD constructs
an embedding space for each action chunk at:t+k by encoding
it as a vector-quantized latent code zq 2 Rnq . This is done by
mapping a continuous action chunk to its latent code encoded
by a multi-headed attention model ze = �act

enc(at:t+k). Then
for a given codebook C of nc codes ei that are each nq-
dimensional embedding vectors, a latent vector ze is quantized
by being mapped to its nearest neighbor in the codebook,
giving ec This yields the vector-quantized latent variable
zq(�enc(at:t+k)) = ec.

In practice, the codebook C is first trained to accurately
encode action chunks at:t+k 2 D with the transformer
encoder �act

enc(at:t+k) = ze. The generated ze is input to a
quantizer [28], which maps ze to a one-hot vector to select a
code within the codebook C, resulting in latent quantized code
zq. While there are multiple implementations of quantizers,
ours treats ze as the logits of a softmax function to obtain
a probability distribution �(ze), which samples c from the
resulting multinomial distribution: c ⇠ M(�(ze)).

After obtaining the code zq, the discrete codes input
to  dec along with additional context for the current state
and task, [zstate, ztask], to reconstruct action chunks ât:t+k =
 dec(zq), zstate,ztask . To train the action encoder and decoder,
the reconstruction loss of predicted actions is computed as
Lact =

1
k

Pt+k
i=t kâi � āik1. The full codebook training objec-

tive then combines the action reconstruction and codebook
alignment losses to align the latent variables �(ze) with
the sampled codes c. Since the quantized code sampling
step is non-differentiable, the code alignment loss uses the
straight-through-estimator to copy gradients from the zq to
ze: Lcode = kze � SG[zq]k1+kSG[ze] � zqk1, where SG
is a stop gradient. This makes the final codebook objective:
Lcodebook = Lcode + Lact.

Prior work [28] has demonstrated this vector-quantization
scheme as being effective at modeling high-resolution multi-
modal continuous actions, as they may correspond to different
modes and sub-skills found in the demonstration data. We
extend this to additionally study it in a multi-task domain,
where these modes are inherently reflected in the different
tasks.

B. Improving Imitation with Critic Guidance
Given a task set containing m tasks, where the action

and state spaces A and S are shared across tasks, we take
m single-task RL experts ⇡̄i and critics Qi and construct
an aggregate critic Qagg = [Q1, . . . , Qm]. Let ti = i be
the one-hot task index to retrieve the estimated return Qi

corresponding to the i-th task expert critic. Then, given
states s, observations o, actions a, and task indices ti from
a multi-task dataset D of rollouts generated from each of
the m single-task experts ⇡̄i, we distill a multi-task visuo-
motor student policy ⇡✓ using the following distillation
loss: Ldistill =

1
|D|

P
s,o,ti2D [�Qagg(s,⇡✓(s, o, ti)) · ti]. The

complete critic-informed imitation learning objective for
learning a multi-task visuomotor policy becomes:

L = ↵LBC + Ldistill (1)



combining an arbitrary behavior cloning objective LBC ,
weighted by ↵, with the aggregate critic guidance term to
maximize the student policy ⇡✓’s expected return for multi-
task policy improvement. In prior work, this formulation
has been referred to as the dual-IL/RL objective [6], but
note that our formulation uses a frozen asymmetric critic for
multiple-tasks.
Remark: Another version of this training objective substitutes
critic distillation for the DAgger [10] objective. For a given
student policy ⇡✓ and expert policy ⇡̄i, the DAgger objective
is LDAgger = � s⇠⇢⇡̃k⇡✓(s)� ⇡̄(s)k2, where ⇢⇡̃ is the state
distribution induced by following a mixture policy ⇡̃� . The
mixing term � 2 [0, 1], mixes both student and teacher
policies to sample actions from ⇡ with probability � and
actions from ⇡̄ with probability (1��). While this approach is
effective, it is computationally more demanding and requires
further online interaction with the environment.
C. Visual Multitask Policy Learning

Our complete policy architecture ⇡✓ (where ✓ = {�, })
consists of a vector-quantized variational auto-encoder (VQ-
VAE) with two main components: a BERT-style transformer
encoder �enc (as described in Sec. III-A), and an action
decoder  dec. The different inputs for training and inference
necessitate two separate objectives for codebook learning and
behavior cloning, as illustrated in Fig. 2 (a) and (b).

In order to achieve visual multi-task imitation learning,
our policy must infer which action chunks to generate at
test time based on the current robot state, observation, and
task. To achieve this, we train the vision-based multi-task
policy ⇡✓ (illustrated in Fig. 2 (b)), which is composed
of the latent encoder �lat

enc and decoder  dec. An MLP
state embedding network �state embeds the recent history
of input robot states st�h:t to give zstate. R3M [30] is used
as the pretrained vision backbone �task to encode images
and the task index ti, and receives the final frame oT of
each trajectory as the goal image, as well as the current
image ot from the environment. Together, these are used
by the latent encoder �lat

enc to predict the latent code ẑq.
The predicted latent codes are then aligned to match the
codes learned in the first codebook training stage by a cross-
entropy loss Llat = CE(zq(�act

enc(at:t+k)), ẑq(�lat
enc(ot))), with

ot composed of the list of inputs [ot, oT , ti] to the policy at
inference time. Finally, the VQ-VAE decoder  dec is reused
to predict the action chunk ât:t+k, and is trained with the
same action reconstruction loss as before. This gives the
complete behavior cloning loss for the multi-task student
policy as LBC = Llat + Lact. Combining the codebook,
reconstruction, and critic-guidance objectives, we derive the
full critic-guided distillation objective from Eq. 1 for ACGD:
LACGD = ↵(Llat + Lcode) + Ldistill.

IV. EXPERIMENTS

When evaluating ACGD, we set out to address the
following questions experimentally:
1) Does critic distillation improve learned multi-task skills

compared to multi-task behavior cloning and reinforce-
ment learning alone?

BiDex (3) MyoDex (10) OpDex (2)

Fig. 3: A snapshot of different task sets and domains used in our
benchmarks, showing dexterous manipulation of 22-52 degrees of
freedom to manipulate a diverse range of object classes and visual
domains.

2) How does performance scale both with number of expert
demonstrations per task and total number of tasks?

3) For visual dexterous manipulation tasks, what combination
of policy architecture, pre-trained image encoder, and input
features yields better policies?

To evaluate our approach, we consider a range of different
difficult dexterous manipulation benchmark task sets (ranging
from 2 to 10 skills per set), and compare with multiple policy
architectures (BC-RNN, ACT, VQ-VAE, and MT-PPO), and
observe the effect of how many demonstrations and tasks are
needed for learning a robust multi-task policy. We present
a comprehensive comparison of RL and IL baselines to our
method to highlight the key improvements over prior work:
namely the use of a) the critic distillation loss term and b)
vector-quantization. We also evaluated DAgger as an alternate
online distillation method to highlight key advantages of our
offline critic-guided distillation approach in a reduced number
of environment interactions.
Baselines – Comparing our method with existing work, we
use BC-RNN [7] as a default behavior cloning strategy with a
recurrent policy, and ACT [22] for an transformer-based BC
architecture to highlight the effect of adding critic-guided dis-
tillation along with vector-quantization for multi-task behavior
cloning. We additionally compare our method to multi-task
algorithms, MT-PPO and MT-TDMPC2 [1, 20], which are
model-free and model-based RL baselines respectively. Note
that, we additionally include their single-task state-based
variants as expert policies for generating rollouts and critics.
Tasks: Dexterous manipulation – To evaluate our method’s
ability to learn in a multi-task environment, we use three
multi-task domains (Fig. 3): (a) the MyoDex benchmark
from [1] (a single hand actuated by 39 DoF muscle tendons),
b) the BiDex benchmark environments from [9] (52 DoF for
two Shadow hands), and (c) OpDex: a modified AllegroHand
environment from [31] with 22 degrees of freedom (16 DoF
for hand and 6 DoF for wrist) and operable articulated objects.
We include a complete list of tasks, videos, and training details
on our website.
A. Comparisons to BC and RL

In the AllegroHandSpray task set, we compared our
method to BC+DAgger, ACT, and MT-PPO on two different
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Task BC-RNN+DAgger [7] ACT [21] ACGD (Ours) MT-PPO Expert Policy
Observation Type Image Image Image Image GT
Agent Type Multi-task Multi-task Multi-task Multi-task Single-Task

KeyTurn 0.82 0.82 1.00 0.20 1.00
KeyTurnHard 0.08 0.02 0.12 0.00 0.20
ObjHold 0.71 0.81 0.98 0.00 1.00
ObjHoldHard 0.65 0.72 0.81 0.00 0.90
PenTwirl 0.86 0.84 0.89 0.12 1.00
PenTwirlHard 0.39 0.58 0.36 0.00 0.47
Pose 0.91 0.90 0.93 0.00 1.00
PoseHard 0.49 0.96 0.99 0.00 0.20
Reach 0.89 0.84 0.99 0.10 1.00
ReachHard 0.63 0.76 0.74 0.00 0.97

Myodex Mean 0.64 0.73 0.78 0.04 0.76

Scissors 0.73 0.33 0.84 0.57 0.89
Switch 0.89 0.93 1.00 0.45 0.65
Bottle 0.84 0.49 0.93 0.31 0.58

Bidex Mean 0.82 0.58 0.92 0.44 0.74

Spray 1 1.00 1.00 1.00 0.40 1.00
Spray 2 0.58 0.64 0.89 0.23 0.97

DexOp Mean 0.79 0.82 0.95 0.32 0.98

TABLE I: Comparing performance between BC-RNN+DAgger, ACT, Expert Policy, and ACGD across Myodex, Bidex, and DexOp
spraying tasks. ACGD achieves state-of-the-art performance on image-based inputs, surpassing multi-task and single-task expert baselines in
most tasks. We note that the ACT baseline performs relatively well on the MyoDex suite, but struggles in the bimanual dexterity task suite,
even though there are fewer tasks in that set, indicating our method is well suited to learning higher-DoF multi-task visuo-motor skills.

spray bottle tasks. This task set is challenging for state-based
experts because without vision it is difficult to know if and
when the hand collides with the object, knocks it over and
thereby terminates the episode. As shown in Table I in the
OpDex task set, both distillation methods (BC+DAgger and
ACGD) outperform MT-PPO, which fails at generalizing to
both spray bottles with image-based observations. In contrast,
our method (ACGD) significantly outperforms both, the
DAgger distillation method and the BC and RL baselines. In
addition to tasks with the Allegro Hand, we noticed a similar
comparative advantage in the MyoDex and BiDex task sets
(Table I). Our method achieves SOTA results and significantly
outperform both RL and IL baselines in a majority of the
tasks. However, when ablating our model with online DAgger
distillation instead of critic-guided distillation (see Table II),
we note that while the final task performance is close and
comparable to ACGD, DAgger requires additional interactions
with the environment, making it an "online" distillation
method, compared to critic-guided distillation, which only
requires the offline inference compute of Qagg.

B. Ablation of Model Design Choices
Next, we perform an extensive empirical analysis of

different architectural choices, to determine what key com-
ponents are needed for high-performing multi-task dexterous
visuomotor policies. Specifically, we look at a) the choice of
encoder architecture, b) the choice of distillation method, and
c) the vision backbone. Our full method outperforms the other
combined approaches, but performs comparably to DAgger
distillation when combined with the Vanilla and VQ-VAE
encoders. However, we note that the key benefit of using
critic-guided distillation is that it does not require additional
interactions and labels with the environment. On real robot

hardware, it would become infeasible query baseline actions
from a state-based expert policy.

Additionally, we note that when comparing the vanilla and
VQ-VAE architectures directly with no distillation, there are
no clear performance differences in this specific task set. As
can be seen in Table I, the gap widens in more complex tasks
with more DoF (see Sec. IV-A).
C. Effects of Scaling Demonstrations and Tasks

A key attribute of multi-task policies is their ability to
learn tasks from fewer demonstrations. To test this hypothesis,
we varied the number of demonstrations and tasks and then
analyse whether our approach catastrophically forgets specific
tasks, or fails to generalize in our multi-task benchmarks.
To measure the effects of increasing the number of tasks,
task difficulty, and demonstration count, we evaluated on
three overlapping sets of tasks from the MyoDex benchmark
(Myo5-Easy, Myo5-Hard, and Myo10). We compare to
TDMPC2 [20], a state-of-the-art, vision and state-based multi-
task learning method. Overall, we found that our method
outperforms TDMPC2 on both task sets by about 60% per
task set (see Table 4).

In the MyoDex task sets, the easy version of a task uses
a fixed goal pose, while hard tasks constitute random goals.
While our model solves the easy tasks at a higher rate than
the hard task set, the best performing model was trained on
all 10 tasks when limited to 500 demonstrations per task. This
highlights that model performance is positively correlated

with more tasks, as the total number of trajectories trained
on is increased while the number of demonstrations per task
remains constant (Myo10 in Fig. 4). This is especially true
if learning an easy task encodes relevant skills for the harder
version of the task.



Method Myo5-Easy (%) Myo5-Hard (%) Average (%)

ACGD (VQ-VAE), Critic Distillation 0.96 0.60 0.78
ACGD (VQ-VAE), No Distillation 0.86 0.62 0.74
ACGD (VQ-VAE), DAgger 0.94 0.56 0.75
Vanilla ACT, Critic Distillation 0.76 0.50 0.63
Vanilla ACT, No Distillation 0.88 0.58 0.73
Vanilla ACT, DAgger 0.84 0.60 0.73

TABLE II: Ablating various dis-
tillation methods and architectures
(Vanilla VAE vs VQ-VAE) on
Myo5-Easy, Myo5-Hard task sets.
Across both distillation and archi-
tecture approaches, we find the
VQ-VAE with the critic distillation
method is empirically the best com-
bination.

Fig. 4: Success rates as number of demonstrations and tasks scale
(for 100 and 500 samples) on Myo5 Easy, Hard, and Myo10 tasks.

D. Quality of Critic Estimation
Next, we take a closer look at tasks where ACGD method

underperforms the Vanilla ACT baseline shown in Table
I. We plot the expert critic loss for 5 tasks in Fig. 5. If
critic error is low, then ACGD outperforms vanilla behavior
cloning, regardless of the quality of the expert. Notably,
for the KeyTurnHard and PoseHard tasks, multi-task
visuomotor policies outperformed the single-task experts
using ground truth states as observations (data source). In
contrast, in tasks where critic estimation is poor, regardless
of the exert performance, ACGD does not outperform vanilla
behavior cloning, since the additional learning signal from
critic is not reliable. We see this in ReachHard (good expert,
high critic loss) and PenTwirlHard (poor expert, high
critic loss), where ACGD negatively affects the success rate
on that task compared to no critic-distillation. This indicate
multi-task generalization combined with vision as input and
multi-task generalization can lead to further improvement
over even single-task state-based RL.

V. DISCUSSION AND CONCLUSION

In this work, we take steps to extend the capabilities
of single-task behavior cloning methods to solve multiple
high dimensional continuous control tasks using vision. Our
method, ACGD, uses critic-guided distillation to learn a multi-
task student policy from a combined objective of aggregate
Q-functions from multiple single-task experts with a behavior
cloning objective using rollouts generated by those same
experts. We use a Vector-Quantized Variational Auto-Encoder
to predict action chunks from a learned discrete latent action
token zq . Our proposed pipeline (Fig. 2), is evaluated on three
different dexterous manipulation task sets: OpDex, BiDex,
and MyoDex, first trains a set of single-task experts with RL,

Fig. 5: Comparing the relative critic losses for tasks from
the Myo5-Hard task set, we see that the critic losses for
PenTwirlHard and ReachHard are key outliers, corresponding
to tasks where ACGD struggles due to poor value estimation. In
contrast, tasks with low critic prediction error show that ACGD’s
overall task performance can improve subject to better critic
optimization and value estimation.

collecting a set of task demonstrations from each, and then
finally distills the image-based policy with proprioception
into a single student policy. In conclusion, this paper provides
a strong basis for distilling multiple teacher policies for
dexterous manipulation with vision, with a potential of scaling
across tasks and demonstrations with more data and experts.
Limitations – Our experiments found that multi-task visuo-
motor policies trained with ACGD outperformed both IL and
RL baselines, as well as DAgger distillation. However, we
note that some of the tasks are limited by the expert critic
policy evaluation, due to the learned single-task policy being
a suboptimal expert. The resulting policy made our method
perform worse than a naive behavior cloning model trained on
success-only trajectories. Another architectural limitation is
using goal-images from expert trajectories when conditioning
the policy, as these are not available at test time. On real
hardware, this would require each task be shown in a solved
state once before evaluating the policy. Some recent works
have shown that language embeddings [32, 33] to embed the
task goal. This, or the use of a generative model for imagining
goals at test-time [5] can remove this goal-image dependence.
Lastly, the multi-task training dataset collected by our method
is restricted to successes-only due to our chosen imitation
learning approach. This remains a key limitation of many IL
algorithms, since generated data is discarded. However, critic-
distillation only relies on a well-trained critic that evaluates
the student policy after being trained on negative samples.
This could in theory make including negative rollout samples
possible and even benefit the student policy.



REFERENCES

[1] V. Caggiano, S. Dasari, and V. Kumar, “Myodex: A generaliz-
able prior for dexterous manipulation,” 2023.

[2] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson,
and P. Agrawal, “Visual dexterity: In-hand reorientation
of novel and complex object shapes,” Science Robotics,
vol. 8, no. 84, p. eadc9244, 2023. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.adc9244

[3] T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand
object re-orientation,” Conference on Robot Learning, 2021.

[4] H. Zhang, S. Christen, Z. Fan, L. Zheng, J. Hwangbo, J. Song,
and O. Hilliges, “Artigrasp: Physically plausible synthesis of
bi-manual dexterous grasping and articulation,” 2024.

[5] Z. Zhou, P. Atreya, A. Lee, H. Walke, O. Mees, and S. Levine,
“Autonomous improvement of instruction following skills via
foundation models,” arXiv preprint arXiv:407.20635, 2024.

[6] H. Sikchi, Q. Zheng, A. Zhang, and S. Niekum, “Dual rl:
Unification and new methods for reinforcement and imitation
learning,” 2024.

[7] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang,
R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martín-
Martín, “What matters in learning from offline human
demonstrations for robot manipulation,” in arXiv preprint

arXiv:2108.03298, 2021.
[8] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh,

J. Liu, D. Makoviichuk, K. V. Wyk, A. Zhurkevich, B. Sun-
daralingam, Y. Narang, J.-F. Lafleche, D. Fox, and G. State,
“Dextreme: Transfer of agile in-hand manipulation from simu-
lation to reality,” 2024.

[9] Y. Chen, Y. Yang, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu,
S. M. McAleer, H. Dong, and S.-C. Zhu, “Towards human-level
bimanual dexterous manipulation with reinforcement learning,”
in Thirty-sixth Conference on Neural Information Processing

Systems Datasets and Benchmarks Track, 2022. [Online].
Available: https://openreview.net/forum?id=D29JbExncTP

[10] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of
imitation learning and structured prediction to no-regret online
learning,” 2011.

[11] S. Dasari, A. Gupta, and V. Kumar, “Learning dexterous
manipulation from exemplar object trajectories and pre-grasps,”
in 2023 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2023, pp. 3889–3896.
[12] Z. Fan, M. Parelli, M. E. Kadoglou, M. Kocabas, X. Chen,

M. J. Black, and O. Hilliges, “HOLD: Category-agnostic 3d
reconstruction of interacting hands and objects from video,”
2024.

[13] K. Zakka, P. Wu, L. Smith, N. Gileadi, T. Howell, X. B.
Peng, S. Singh, Y. Tassa, P. Florence, A. Zeng, and
P. Abbeel, “Robopianist: Dexterous piano playing with
deep reinforcement learning,” 2023. [Online]. Available:
https://arxiv.org/abs/2304.04150

[14] A. Kurenkov, A. Mandlekar, R. Martin-Martin, S. Savarese,
and A. Garg, “Ac-teach: A bayesian actor-critic method for
policy learning with an ensemble of suboptimal teachers,” arXiv

preprint arXiv:1909.04121, 2019.
[15] A. X. Lee, C. Devin, J. T. Springenberg, Y. Zhou,

T. Lampe, A. Abdolmaleki, and K. Bousmalis, “How to
spend your robot time: Bridging kickstarting and offline
reinforcement learning for vision-based robotic manipulation,”
2022 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 2468–2475, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:248562602

[16] A. Galashov, J. S. Merel, and N. Heess, “Data augmentation for
efficient learning from parametric experts,” Advances in Neural

Information Processing Systems, vol. 35, pp. 31 484–31 496,
2022.

[17] D. Tirumala, M. Wulfmeier, B. Moran, S. Huang, J. Humplik,

G. Lever, T. Haarnoja, L. Hasenclever, A. Byravan, N. Batche-
lor et al., “Learning robot soccer from egocentric vision with
deep reinforcement learning,” arXiv preprint arXiv:2405.02425,
2024.

[18] A. Agarwal, S. Uppal, K. Shaw, and D. Pathak, “Dexterous
functional grasping,” 2023.

[19] W. Huang, I. Mordatch, P. Abbeel, and D. Pathak, “Generaliza-
tion in dexterous manipulation via geometry-aware multi-task
learning,” arXiv preprint arXiv:2111.03062, 2021.

[20] N. Hansen, H. Su, and X. Wang, “Td-mpc2: Scalable, robust
world models for continuous control,” 2024.

[21] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning
fine-grained bimanual manipulation with low-cost hardware,”
arXiv preprint arXiv:2304.13705, 2023.

[22] Z. Fu, T. Z. Zhao, and C. Finn, “Mobile aloha: Learning
bimanual mobile manipulation with low-cost whole-body
teleoperation,” in arXiv, 2024.

[23] T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S.
Ghasemipour, C. Finn, and A. Wahid, “Aloha unleashed: A
simple recipe for robot dexterity,” in 8th Annual Conference

on Robot Learning.
[24] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen,

R. Wang, H. Geng, Y. Weng, J. Chen et al., “Unidexgrasp:
Universal robotic dexterous grasping via learning diverse pro-
posal generation and goal-conditioned policy,” arXiv preprint

arXiv:2303.00938, 2023.
[25] Z. Jia, X. Li, Z. Ling, S. Liu, Y. Wu, and H. Su, “Improving

policy optimization with generalist-specialist learning,” 2022.
[Online]. Available: https://arxiv.org/abs/2206.12984

[26] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,”
Science Robotics, vol. 5, no. 47, Oct. 2020. [Online]. Available:
http://dx.doi.org/10.1126/scirobotics.abc5986

[27] A. Van Den Oord, O. Vinyals et al., “Neural discrete represen-
tation learning,” Advances in neural information processing

systems, vol. 30, 2017.
[28] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah,

and L. Pinto, “Behavior generation with latent actions,” arXiv

preprint arXiv:2403.03181, 2024.
[29] S. Haldar, Z. Peng, and L. Pinto, “Baku: An efficient

transformer for multi-task policy learning,” arXiv preprint

arXiv:2406.07539, 2024.
[30] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta,

“R3m: A universal visual representation for robot manipulation,”
2022.

[31] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey,
M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and
G. State, “Isaac gym: High performance gpu-based physics
simulation for robot learning,” 2021.

[32] H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani,
and V. Kumar, “Roboagent: Generalization and efficiency in
robot manipulation via semantic augmentations and action
chunking,” in 2024 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2024, pp. 4788–4795.
[33] H. Ha, P. Florence, and S. Song, “Scaling up and distilling

down: Language-guided robot skill acquisition,” 2023. [Online].
Available: https://arxiv.org/abs/2307.14535

https://www.science.org/doi/abs/10.1126/scirobotics.adc9244
https://openreview.net/forum?id=D29JbExncTP
https://arxiv.org/abs/2304.04150
https://api.semanticscholar.org/CorpusID:248562602
https://arxiv.org/abs/2206.12984
http://dx.doi.org/10.1126/scirobotics.abc5986
https://arxiv.org/abs/2307.14535

